Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J. optom. (Internet) ; 17(2): [100501], Abr-Jun, 2024. tab, graf
Artigo em Inglês | IBECS | ID: ibc-231626

RESUMO

Purpose: To evaluate the prevalence of diagnosed dry eye syndrome, meibomian gland dysfunction, and blepharitis amongst the low vision population. Methods: A retrospective analysis was conducted on patients seen in the University of Colorado Low Vision Rehabilitation Service between the dates of 12/1/2017 and 12/1/2022. 74 ICD-10 codes were used to identify patients as having dry eye syndrome or not having dry eye syndrome. Data was further analyzed to determine the prevalence of blepharitis and meibomian gland dysfunction using 29 blepharitis and 9 meibomian gland dysfunction ICD-10 codes. Data were also analyzed to determine the age and sex of the patients with diagnosed dry eye syndrome. Results: The percentage of patients with a diagnosis of dry eye syndrome by an eyecare provider was 38.02 %. The prevalence of dry eye syndrome by age group was 3.57 % for 0–19 years, 14.35 % for 20–39 years, 29.07 % for 40–59 years, 43.79 % for 60–79 years, and 46.21 % for 80 and above. The prevalence of meibomian gland dysfunction and blepharitis was 11.90 % and 9.1 % respectively. Dry eye syndrome prevalence amongst males was 31.59 % and 42.47 % for females. Conclusion: This study demonstrates that dry eye syndrome in the low vision population is a significant co-morbidity occurring in over a third of patients in the University of Colorado Low Vision Rehabilitation Service. These findings are meaningful as ocular comfort should not be overlooked while managing complex visual needs. (AU)


Assuntos
Humanos , Síndromes do Olho Seco , Blefarite , Glândulas Tarsais , Reabilitação , Oftalmologistas , Estados Unidos
2.
Diabetes ; 73(1): 51-56, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847913

RESUMO

In contrast to the well-defined biological feedback loops controlling glucose, the mechanisms by which the body responds to changes in fatty acid availability are less clearly defined. Growth differentiating factor 15 (GDF15) suppresses the consumption of diets high in fat but is paradoxically increased in obese mice fed a high-fat diet. Given this interrelationship, we investigated whether diets high in fat could directly increase GDF15 independently of obesity. We found that fatty acids increase GDF15 levels dose dependently, with the greatest response observed with linolenic acid. GDF15 mRNA expression was modestly increased in the gastrointestinal tract; however, kidney GDF15 mRNA was ∼1,000-fold higher and was increased by more than threefold, with subsequent RNAscope analysis showing elevated expression within the cortex and outer medulla. Treatment of wild-type mice with linolenic acid reduced food intake and body mass; however, this effect disappeared in mice lacking the GDF15 receptor GFRAL. An equal caloric load of glucose did not suppress food intake or reduce body mass in either wild-type or GFRAL-knockout mice. These data indicate that fatty acids such as linolenic acid increase GDF15 and suppress food intake through a mechanism requiring GFRAL. These data suggest that a primary physiological function of GDF15 may be as a fatty acid sensor designed to protect cells from fatty acid overload. ARTICLE HIGHLIGHTS: The mechanisms by which the body responds to changes in fatty acid availability are less clearly defined. We investigated whether diets high in fat could directly increase growth differentiating factor 15 (GDF15) independently of obesity. Fatty acids increase GDF15 and reduce food intake through a GFRAL signaling axis. GDF15 is a sensor of fatty acids that may have important implications for explaining increased satiety after consumption of diets high in fat.


Assuntos
Ingestão de Alimentos , Obesidade , Animais , Camundongos , Ácidos Graxos , Glucose/metabolismo , Ácidos Linolênicos/farmacologia , Camundongos Knockout , Obesidade/metabolismo , RNA Mensageiro
3.
J Optom ; 17(2): 100501, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37944476

RESUMO

PURPOSE: To evaluate the prevalence of diagnosed dry eye syndrome, meibomian gland dysfunction, and blepharitis amongst the low vision population. METHODS: A retrospective analysis was conducted on patients seen in the University of Colorado Low Vision Rehabilitation Service between the dates of 12/1/2017 and 12/1/2022. 74 ICD-10 codes were used to identify patients as having dry eye syndrome or not having dry eye syndrome. Data was further analyzed to determine the prevalence of blepharitis and meibomian gland dysfunction using 29 blepharitis and 9 meibomian gland dysfunction ICD-10 codes. Data were also analyzed to determine the age and sex of the patients with diagnosed dry eye syndrome. RESULTS: The percentage of patients with a diagnosis of dry eye syndrome by an eyecare provider was 38.02 %. The prevalence of dry eye syndrome by age group was 3.57 % for 0-19 years, 14.35 % for 20-39 years, 29.07 % for 40-59 years, 43.79 % for 60-79 years, and 46.21 % for 80 and above. The prevalence of meibomian gland dysfunction and blepharitis was 11.90 % and 9.1 % respectively. Dry eye syndrome prevalence amongst males was 31.59 % and 42.47 % for females. CONCLUSION: This study demonstrates that dry eye syndrome in the low vision population is a significant co-morbidity occurring in over a third of patients in the University of Colorado Low Vision Rehabilitation Service. These findings are meaningful as ocular comfort should not be overlooked while managing complex visual needs.

4.
Cell Rep Med ; 4(9): 101193, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37729871

RESUMO

Increased liver de novo lipogenesis (DNL) is a hallmark of nonalcoholic steatohepatitis (NASH). A key enzyme controlling DNL upregulated in NASH is ATP citrate lyase (ACLY). In mice, inhibition of ACLY reduces liver steatosis, ballooning, and fibrosis and inhibits activation of hepatic stellate cells. Glucagon-like peptide-1 receptor (GLP-1R) agonists lower body mass, insulin resistance, and steatosis without improving fibrosis. Here, we find that combining an inhibitor of liver ACLY, bempedoic acid, and the GLP-1R agonist liraglutide reduces liver steatosis, hepatocellular ballooning, and hepatic fibrosis in a mouse model of NASH. Liver RNA analyses revealed additive downregulation of pathways that are predictive of NASH resolution, reductions in the expression of prognostically significant genes compared with clinical NASH samples, and a predicted gene signature profile that supports fibrosis resolution. These findings support further investigation of this combinatorial therapy to treat obesity, insulin resistance, hypercholesterolemia, steatohepatitis, and fibrosis in people with NASH.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Aciltransferases
5.
Clin Med (Lond) ; 23(4): 387-394, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37524414

RESUMO

People experiencing homelessness have extremely poor health outcomes and frequently die young. Many single homeless people live in hostels, the remit of which is to provide support to facilitate recovery out of homelessness. They are not usually designed to support people with high health or care needs. A cross-sectional survey was developed with, and completed by, hostel managers to explore and quantify the level of health and care needs of people living in their hostels. In total, 58 managers completed the survey, with information on 2,355 clients: 64% had substance use disorder, 56% had mental health issues, and 37.5% were in poor physical health. In addition, 5% had had more than three unplanned hospital visits in the previous month, and 11% had had safeguarding referrals submitted over the past year. Barriers to getting support and referrals accepted were highlighted, particularly for people with substance use disorder. Hostel managers identified 9% of clients as having needs too high for their service, while move-on options were scarce. Our study highlights significant unmet needs. Health and care services are not providing adequate support for many people living in hostels, who often have very poor health outcomes. This inequity needs to be considered and addressed as a matter of urgency.


Assuntos
Pessoas Mal Alojadas , Transtornos Relacionados ao Uso de Substâncias , Humanos , Estudos Transversais , Inquéritos e Questionários , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/psicologia , Hospitais
6.
Nature ; 619(7968): 143-150, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380764

RESUMO

Caloric restriction that promotes weight loss is an effective strategy for treating non-alcoholic fatty liver disease and improving insulin sensitivity in people with type 2 diabetes1. Despite its effectiveness, in most individuals, weight loss is usually not maintained partly due to physiological adaptations that suppress energy expenditure, a process known as adaptive thermogenesis, the mechanistic underpinnings of which are unclear2,3. Treatment of rodents fed a high-fat diet with recombinant growth differentiating factor 15 (GDF15) reduces obesity and improves glycaemic control through glial-cell-derived neurotrophic factor family receptor α-like (GFRAL)-dependent suppression of food intake4-7. Here we find that, in addition to suppressing appetite, GDF15 counteracts compensatory reductions in energy expenditure, eliciting greater weight loss and reductions in non-alcoholic fatty liver disease (NAFLD) compared to caloric restriction alone. This effect of GDF15 to maintain energy expenditure during calorie restriction requires a GFRAL-ß-adrenergic-dependent signalling axis that increases fatty acid oxidation and calcium futile cycling in the skeletal muscle of mice. These data indicate that therapeutic targeting of the GDF15-GFRAL pathway may be useful for maintaining energy expenditure in skeletal muscle during caloric restriction.


Assuntos
Metabolismo Energético , Fator 15 de Diferenciação de Crescimento , Músculo Esquelético , Redução de Peso , Animais , Humanos , Camundongos , Depressores do Apetite/metabolismo , Depressores do Apetite/farmacologia , Depressores do Apetite/uso terapêutico , Restrição Calórica , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Fator 15 de Diferenciação de Crescimento/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Receptores Adrenérgicos beta/metabolismo , Redução de Peso/efeitos dos fármacos
7.
Clin Med (Lond) ; 23(4): 387-394, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614654

RESUMO

People experiencing homelessness have extremely poor health outcomes and frequently die young. Many single homeless people live in hostels, the remit of which is to provide support to facilitate recovery out of homelessness. They are not usually designed to support people with high health or care needs. A cross-sectional survey was developed with, and completed by, hostel managers to explore and quantify the level of health and care needs of people living in their hostels. In total, 58 managers completed the survey, with information on 2,355 clients: 64% had substance use disorder, 56% had mental health issues, and 37.5% were in poor physical health. In addition, 5% had had more than three unplanned hospital visits in the previous month, and 11% had had safeguarding referrals submitted over the past year. Barriers to getting support and referrals accepted were highlighted, particularly for people with substance use disorder. Hostel managers identified 9% of clients as having needs too high for their service, while move-on options were scarce. Our study highlights significant unmet needs. Health and care services are not providing adequate support for many people living in hostels, who often have very poor health outcomes. This inequity needs to be considered and addressed as a matter of urgency.


Assuntos
Pessoas Mal Alojadas , Transtornos Relacionados ao Uso de Substâncias , Humanos , Estudos Transversais , Hospitais , Encaminhamento e Consulta , Transtornos Relacionados ao Uso de Substâncias/epidemiologia
8.
Cell Metab ; 34(6): 919-936.e8, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675800

RESUMO

Elevated liver de novo lipogenesis contributes to non-alcoholic steatohepatitis (NASH) and can be inhibited by targeting acetyl-CoA carboxylase (ACC). However, hypertriglyceridemia limits the use of pharmacological ACC inhibitors as a monotherapy. ATP-citrate lyase (ACLY) generates acetyl-CoA and oxaloacetate from citrate, but whether inhibition is effective for treating NASH is unknown. Here, we characterize a new mouse model that replicates many of the pathological and molecular drivers of NASH and find that genetically inhibiting ACLY in hepatocytes reduces liver malonyl-CoA, oxaloacetate, steatosis, and ballooning as well as blood glucose, triglycerides, and cholesterol. Pharmacological inhibition of ACLY mirrors genetic inhibition but has additional positive effects on hepatic stellate cells, liver inflammation, and fibrosis. Mendelian randomization of human variants that mimic reductions in ACLY also associate with lower circulating triglycerides and biomarkers of NASH. These data indicate that inhibiting liver ACLY may be an effective approach for treatment of NASH and dyslipidemia.


Assuntos
ATP Citrato (pro-S)-Liase , Dislipidemias , Hepatopatia Gordurosa não Alcoólica , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Acetil-CoA Carboxilase , Animais , Dislipidemias/tratamento farmacológico , Dislipidemias/patologia , Fígado , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Oxaloacetatos/metabolismo , Triglicerídeos
9.
Mol Metab ; 61: 101498, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35452877

RESUMO

BACKGROUND/PURPOSE: Type 2 diabetes and obesity increase the risk of developing colorectal cancer. Metformin may reduce colorectal cancer but the mechanisms mediating this effect remain unclear. In mice and humans, a high-fat diet (HFD), obesity and metformin are known to alter the gut microbiome but whether this is important for influencing tumor growth is not known. METHODS: Mice with syngeneic MC38 colon adenocarcinomas were treated with metformin or feces obtained from control or metformin treated mice. RESULTS: We find that compared to chow-fed controls, tumor growth is increased when mice are fed a HFD and that this acceleration of tumor growth can be partially recapitulated through transfer of the fecal microbiome or in vitro treatment of cells with fecal filtrates from HFD-fed animals. Treatment of HFD-fed mice with orally ingested, but not intraperitoneally injected, metformin suppresses tumor growth and increases the expression of short-chain fatty acid (SCFA)-producing microbes Alistipes, Lachnospiraceae and Ruminococcaceae. The transfer of the gut microbiome from mice treated orally with metformin to drug naïve, conventionalized HFD-fed mice increases circulating propionate and butyrate, reduces tumor proliferation, and suppresses the expression of sterol response element binding protein (SREBP) gene targets in the tumor. CONCLUSION: These data indicate that in obese mice fed a HFD, metformin reduces tumor burden through changes in the gut microbiome.


Assuntos
Neoplasias Colorretais , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Animais , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico
10.
Am J Physiol Cell Physiol ; 322(3): C546-C553, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35138177

RESUMO

We aimed to determine the combined effects of overexpressing plasma membrane fatty acid binding protein (FABPpm) and fatty acid translocase (CD36) on skeletal muscle fatty acid transport to establish if these transport proteins function collaboratively. Electrotransfection with either FABPpm or CD36 increased their protein content at the plasma membrane (+75% and +64%), increased fatty acid transport rates by +24% for FABPpm and +62% for CD36, resulting in a calculated transport efficiency of ∼0.019 and ∼0.053 per unit protein change for FABPpm and CD36, respectively. We subsequently used these data to determine if increasing both proteins additively or synergistically increased fatty acid transport. Cotransfection of FABPpm and CD36 simultaneously increased protein content in whole muscle (FABPpm, +46%; CD36, +45%) and at the sarcolemma (FABPpm, +41%; CD36, +42%), as well as fatty acid transport rates (+50%). Since the relative effects of changing FABPpm and CD36 content had been independently determined, we were able to a predict a change in fatty acid transport based on the overexpression of plasmalemmal transporters in the cotransfection experiments. This prediction yielded an increase in fatty acid transport of +0.984 and +1.722 pmol/mg prot/15 s for FABPpm and CD36, respectively, for a total increase of +2.96 pmol/mg prot/15 s. This calculated determination was remarkably consistent with the measured change in transport, namely +2.89 pmol/mg prot/15 s. Altogether, these data indicate that increasing CD36 and FABPpm alters fatty acid transport rates additively, but not synergistically, suggesting an independent mechanism of action within muscle for each transporter. This conclusion was further supported by the observation that plasmalemmal CD36 and FABPpm did not coimmunoprecipitate.


Assuntos
Proteínas de Ligação a Ácido Graxo , Ácidos Graxos , Transporte Biológico/fisiologia , Antígenos CD36/genética , Antígenos CD36/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Músculo Esquelético/metabolismo , Sarcolema/metabolismo
11.
Nat Commun ; 12(1): 5163, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453052

RESUMO

Obesity results from a caloric imbalance between energy intake, absorption and expenditure. In both rodents and humans, diet-induced thermogenesis contributes to energy expenditure and involves the activation of brown adipose tissue (BAT). We hypothesize that environmental toxicants commonly used as food additives or pesticides might reduce BAT thermogenesis through suppression of uncoupling protein 1 (UCP1) and this may contribute to the development of obesity. Using a step-wise screening approach, we discover that the organophosphate insecticide chlorpyrifos suppresses UCP1 and mitochondrial respiration in BAT at concentrations as low as 1 pM. In mice housed at thermoneutrality and fed a high-fat diet, chlorpyrifos impairs BAT mitochondrial function and diet-induced thermogenesis, promoting greater obesity, non-alcoholic fatty liver disease (NAFLD) and insulin resistance. This is associated with reductions in cAMP; activation of p38MAPK and AMPK; protein kinases critical for maintaining UCP1 and mitophagy, respectively in BAT. These data indicate that the commonly used pesticide chlorpyrifos, suppresses diet-induced thermogenesis and the activation of BAT, suggesting its use may contribute to the obesity epidemic.


Assuntos
Tecido Adiposo Marrom/fisiopatologia , Clorpirifos/metabolismo , Obesidade/fisiopatologia , Praguicidas/metabolismo , Termogênese/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Animais , Clorpirifos/toxicidade , AMP Cíclico/metabolismo , Metabolismo Energético , Contaminação de Alimentos/análise , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Obesidade/metabolismo , Praguicidas/toxicidade , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Biochem J ; 477(12): 2347-2361, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32510137

RESUMO

Sodium-glucose cotransporter 2 inhibitors such as canagliflozin lower blood glucose and reduce cardiovascular events in people with type 2 diabetes through mechanisms that are not fully understood. Canagliflozin has been shown to increase the activity of the AMP-activated protein kinase (AMPK), a metabolic energy sensor important for increasing fatty acid oxidation and energy expenditure and suppressing lipogenesis and inflammation, but whether AMPK activation is important for mediating some of the beneficial metabolic effects of canagliflozin has not been determined. We, therefore, evaluated the effects of canagliflozin in female ApoE-/- and ApoE-/-AMPK ß1-/- mice fed a western diet. Canagliflozin increased fatty acid oxidation and energy expenditure and lowered adiposity, blood glucose and the respiratory exchange ratio independently of AMPK ß1. Canagliflozin also suppressed liver lipid synthesis and the expression of ATP-citrate lyase, acetyl-CoA carboxylase and sterol response element-binding protein 1c independently of AMPK ß1. Canagliflozin lowered circulating IL-1ß and studies in bone marrow-derived macrophages indicated that in contrast with the metabolic adaptations, this effect required AMPK ß1. Canagliflozin had no effect on the size of atherosclerotic plaques in either ApoE-/- and ApoE-/-AMPK ß1-/- mice. Future studies investigating whether reductions in liver lipid synthesis and macrophage IL-1ß are important for the cardioprotective effects of canagliflozin warrant further investigation.


Assuntos
Apolipoproteínas E/fisiologia , Canagliflozina/farmacologia , Interleucina-1beta/fisiologia , Lipogênese , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Metabolismo Energético , Feminino , Inflamação/metabolismo , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout para ApoE , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
13.
J Thromb Haemost ; 17(6): 896-900, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30889303

RESUMO

Essentials The BCR-ABL negative myeloproliferative neoplasms are subjected to unknown phenotypic modifiers. GATA-1 is upregulated in ET patients, regardless of treatment regimen or mutational status. Myelofibrosis (MF) megakaryocytes displayed decreased GATA-1 staining. GATA-1 may have utility as a diagnostic marker in ET and in its differential diagnosis from MF. ABSTRACT: Background The BCR-ABL-negative myeloproliferative neoplasms, i.e., polycythemia vera, essential thrombocythemia (ET), and myelofibrosis (MF), are characterized by mutations in JAK2, CALR, or MPL. However, an as yet unknown factor drives the precise disease phenotype. The hematopoietic transcription factor GATA-1 and its downstream targets NFE2 and FLI1 are responsible for determining erythroid and megakaryocyte lineages during hematopoietic stem cell differentiation. Previous studies have demonstrated a low level of GATA-1 expression in megakaryocytes from patients with MF. Objectives and methods The expression of GATA-1, NFE2 and FLI1 was studied for changes in the peripheral blood (PB) of ET patients. Peripheral blood samples were obtained from 36 ET patients, 14 MF patients, and seven healthy control donors. Total RNA from PB mononuclear cells (PBMCs) was extracted, and quantitative polymerase chain reaction was used to determine relative changes in gene expression. Protein levels of GATA-1 were also determined in bone marrow sections from ET and MF patients. Results GATA-1 mRNA was upregulated in ET patients, regardless of treatment regimen or mutational status. FLI1 expression was significantly downregulated, whereas NFE2 expression was unaffected by changes in GATA-1 mRNA levels. Megakaryocytes from ET patients showed increased protein levels of GATA-1 as compared with those from MF patients. Conclusions Our results confirmed, in PB, our previous data demonstrating elevated levels of GATA-1 mRNA in total bone marrow of ET patients. GATA-1 mRNA levels are independent of cytoreductive therapies, and may have utility as a diagnostic marker in ET and in its differential diagnosis from MF.


Assuntos
Fator de Transcrição GATA1/metabolismo , Mielofibrose Primária/diagnóstico , Trombocitemia Essencial/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Medula Óssea/metabolismo , Estudos de Casos e Controles , Diagnóstico Diferencial , Feminino , Fator de Transcrição GATA1/genética , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Subunidade p45 do Fator de Transcrição NF-E2/genética , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , RNA Mensageiro/sangue , RNA Mensageiro/genética , Trombocitemia Essencial/genética , Trombocitemia Essencial/metabolismo
14.
Prostate ; 79(5): 489-497, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30609074

RESUMO

BACKGROUND: Radiotherapy (RT) is a key therapeutic modality for prostate cancer (PrCa), but RT resistance necessitates dose-escalation, often causing bladder and rectal toxicity. Aspirin, a prodrug of salicylate (SAL), has been associated with improved RT response in clinical PrCa cases, but the potential mechanism mediating this effect is unknown. SAL activates the metabolic stress sensor AMP-activated protein kinase (AMPK), which inhibits de novo lipogenesis, and protein synthesis via inhibition of Acetyl-CoA Carboxylase (ACC), and the mammalian Target of Rapamycin (mTOR), respectively. RT also activates AMPK through a mechanism distinctly different from SAL. Therefore, combining these two therapies may have synergistic effects on suppressing PrCa. Here, we examined the potential of SAL to enhance the response of human PrCa cells and tumors to RT. METHODS: Androgen-insensitive (PC3) and -sensitive (LNCaP) PrCa cells were subjected to proliferation and clonogenic survival assays after treatment with clinically relevant doses of SAL and RT. Balb/c nude mice with PC3 xenografts were fed standard chow diet or chow diet supplemented with 2.5 g/kg salsalate (SAL pro-drug dimer) one week prior to a single dose of 0 or 10 Gy RT. Immunoblotting analysis of signaling events in the DNA repair and AMPK-mTOR pathways and lipogenesis were assessed in cells treated with SAL and RT. RESULTS: SAL inhibited proliferation and clonogenic survival in PrCa cells and enhanced the inhibition mediated by RT. Salsalate, added to diet, enhanced the anti-tumor effects of RT in PC3 tumor xenografts. RT activated genotoxic stress markers and the activity of mTOR pathway and AMPK and mediated inhibitory phosphorylation of ACC. Interestingly, SAL enhanced the effects of RT on AMPK and ACC but blocked markers of mTOR activation. CONCLUSIONS: Our results show that SAL can enhance RT responses in PrCa. Salsalate is a promising agent to investigate this concept in prospective clinical trials of PrCa in combination with RT.


Assuntos
Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Radiossensibilizantes/farmacologia , Salicilatos/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Administração Oral , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Humanos , Lipogênese/efeitos dos fármacos , Lipogênese/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cell Metab ; 29(1): 174-182.e5, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30244972

RESUMO

The incidence of hepatocellular carcinoma (HCC) is rapidly increasing due to the prevalence of obesity and non-alcoholic fatty liver disease, but the molecular triggers that initiate disease development are not fully understood. We demonstrate that mice with targeted loss-of-function point mutations within the AMP-activated protein kinase (AMPK) phosphorylation sites on acetyl-CoA carboxylase 1 (ACC1 Ser79Ala) and ACC2 (ACC2 Ser212Ala) have increased liver de novo lipogenesis (DNL) and liver lesions. The same mutation in ACC1 also increases DNL and proliferation in human liver cancer cells. Consistent with these findings, a novel, liver-specific ACC inhibitor (ND-654) that mimics the effects of ACC phosphorylation inhibits hepatic DNL and the development of HCC, improving survival of tumor-bearing rats when used alone and in combination with the multi-kinase inhibitor sorafenib. These studies highlight the importance of DNL and dysregulation of AMPK-mediated ACC phosphorylation in accelerating HCC and the potential of ACC inhibitors for treatment.


Assuntos
Acetil-CoA Carboxilase , Carcinoma Hepatocelular/metabolismo , Lipogênese , Neoplasias Hepáticas/metabolismo , Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/fisiologia , Animais , Células Hep G2 , Humanos , Masculino , Camundongos , Fosforilação , Ratos , Ratos Wistar
16.
FASEB J ; 32(6): 2950-2965, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401588

RESUMO

Stimulation of AMPK induces the expression of dystrophin-associated protein complex (DAPC) components in skeletal muscle, whereas reductions in AMPK are associated with DAPC dysfunction. We sought to determine whether AMPK was necessary for the maintenance of DAPC expression in skeletal muscle. Fast, glycolytic extensor digitorum longus (EDL) and slow, oxidative soleus (Sol) muscles from wild-type mice and from littermates with skeletal muscle-specific knockout of the AMPK ß1 and ß2 subunits (AMPK ß1 ß2M-KO; MKO) were analyzed. DAPC mRNA and protein expression were similar between genotypes, with the exception of elevated neuronal nitric oxide synthase expression at the sarcolemma in MKO muscles. The content of transcriptional and post-transcriptional regulators of the DAPC was also not affected by the loss of AMPK. However, MyoD and myogenin expression was diminished in MKO muscles, consistent with previous reports of myopathy in these animals. Furthermore, we observed decrements in extrasynaptic utrophin expression selectively in MKO Sol muscles, likely due to the adaptive accumulation of peroxisome proliferator-activated receptor γ coactivator-1α at the sarcolemma of MKO EDL muscles. Collectively, the evidence indicates that AMPK is sufficient but not essential for the maintenance of DAPC expression in skeletal muscle, yet it is required for preserving extrasynaptic utrophin levels in slow oxidative muscles.-Dial, A. G., Rooprai, P., Lally, J. S., Bujak, A. L., Steinberg, G. R., Ljubicic, V. The role of AMP-activated protein kinase in the expression of the dystrophin-associated protein complex in skeletal muscle.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Associadas à Distrofina/biossíntese , Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Sarcolema/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Proteínas Associadas à Distrofina/genética , Camundongos , Camundongos Knockout , Proteína MyoD/genética , Proteína MyoD/metabolismo , Óxido Nítrico Sintase Tipo III/biossíntese , Óxido Nítrico Sintase Tipo III/genética , PPAR gama/genética , PPAR gama/metabolismo , Sarcolema/genética
17.
Am J Physiol Endocrinol Metab ; 311(4): E730-E740, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27577854

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a growing worldwide epidemic and an important risk factor for the development of insulin resistance, type 2 diabetes, nonalcoholic steatohepatitis (NASH), and hepatic cellular carcinoma (HCC). Despite the prevalence of NAFLD, lifestyle interventions involving exercise and weight loss are the only accepted treatments for this disease. Over the last decade, numerous experimental compounds have been shown to improve NAFLD in preclinical animal models, and many of these therapeutics have been shown to increase the activity of the cellular energy sensor AMP-activated protein kinase (AMPK). Because AMPK activity is reduced by inflammation, obesity, and diabetes, increasing AMPK activity has been viewed as a viable therapeutic strategy to improve NAFLD. In this review, we propose three primary mechanisms by which AMPK activation may improve NAFLD. In addition, we examine the mechanisms by which AMPK is activated. Finally, we identify 27 studies that have used AMPK activators to reduce NAFLD. Future considerations for studies examining the relationship between AMPK and NAFLD are highlighted.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ativadores de Enzimas/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/enzimologia , Animais , Humanos
18.
Mol Metab ; 4(9): 643-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26413470

RESUMO

OBJECTIVE: Skeletal muscle AMP-activated protein kinase (AMPK) is important for regulating glucose homeostasis, mitochondrial content and exercise capacity. R419 is a mitochondrial complex-I inhibitor that has recently been shown to acutely activate AMPK in myotubes. Our main objective was to examine whether R419 treatment improves insulin sensitivity and exercise capacity in obese insulin resistant mice and whether skeletal muscle AMPK was important for mediating potential effects. METHODS: Glucose homeostasis, insulin sensitivity, exercise capacity, and electron transport chain content/activity were examined in wildtype (WT) and AMPK ß1ß2 muscle-specific null (AMPK-MKO) mice fed a high-fat diet (HFD) with or without R419 supplementation. RESULTS: There was no change in weight gain, adiposity, glucose tolerance or insulin sensitivity between HFD-fed WT and AMPK-MKO mice. In both HFD-fed WT and AMPK-MKO mice, R419 enhanced insulin tolerance, insulin-stimulated glucose disposal, skeletal muscle 2-deoxyglucose uptake, Akt phosphorylation and glucose transporter 4 (GLUT4) content independently of alterations in body mass. In WT, but not AMPK-MKO mice, R419 improved treadmill running capacity. Treatment with R419 increased muscle electron transport chain content and activity in WT mice; effects which were blunted in AMPK-MKO mice. CONCLUSIONS: Treatment of obese mice with R419 improved skeletal muscle insulin sensitivity through a mechanism that is independent of skeletal muscle AMPK. R419 also increases exercise capacity and improves mitochondrial function in obese WT mice; effects that are diminished in the absence of skeletal muscle AMPK. These findings suggest that R419 may be a promising therapy for improving whole-body glucose homeostasis and exercise capacity.

19.
Physiol Rep ; 3(7)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26156967

RESUMO

During submaximal exercise fatty acids are a predominant energy source for muscle contractions. An important regulator of fatty acid oxidation is acetyl-CoA carboxylase (ACC), which exists as two isoforms (ACC1 and ACC2) with ACC2 predominating in skeletal muscle. Both ACC isoforms regulate malonyl-CoA production, an allosteric inhibitor of carnitine palmitoyltransferase 1 (CPT-1); the primary enzyme controlling fatty acyl-CoA flux into mitochondria for oxidation. AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is activated during exercise or by pharmacological agents such as metformin and AICAR. In resting muscle the activation of AMPK with AICAR leads to increased phosphorylation of ACC (S79 on ACC1 and S221 on ACC2), which reduces ACC activity and malonyl-CoA; effects associated with increased fatty acid oxidation. However, whether this pathway is vital for regulating skeletal muscle fatty acid oxidation during conditions of increased metabolic flux such as exercise/muscle contractions remains unknown. To examine this we characterized mice lacking AMPK phosphorylation sites on ACC2 (S212 in mice/S221 in humans-ACC2-knock-in [ACC2-KI]) or both ACC1 (S79) and ACC2 (S212) (ACC double knock-in [ACCD-KI]) during submaximal treadmill exercise and/or ex vivo muscle contractions. We find that surprisingly, ACC2-KI mice had normal exercise capacity and whole-body fatty acid oxidation during treadmill running despite elevated muscle ACC2 activity and malonyl-CoA. Similar results were observed in ACCD-KI mice. Fatty acid oxidation was also maintained in muscles from ACC2-KI mice contracted ex vivo. These findings indicate that pathways independent of ACC phosphorylation are important for regulating skeletal muscle fatty acid oxidation during exercise/muscle contractions.

20.
Diabetologia ; 58(10): 2381-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26197708

RESUMO

AIMS/HYPOTHESIS: The mechanisms for diet-induced intramyocellular lipid accumulation and its association with insulin resistance remain contentious. In a detailed time-course study in rats, we examined whether a high-fat diet increased intramyocellular lipid accumulation via alterations in fatty acid translocase (FAT/CD36)-mediated fatty acid transport, selected enzymes and/or fatty acid oxidation, and whether intramyocellular lipid accretion coincided with the onset of insulin resistance. METHODS: We measured, daily (on days 1-7) and/or weekly (for 6 weeks), the diet-induced changes in circulating substrates, insulin, sarcolemmal substrate transporters and transport, selected enzymes, intramyocellular lipids, mitochondrial fatty acid oxidation and basal and insulin-stimulated sarcolemmal GLUT4 and glucose transport. We also examined whether upregulating fatty acid oxidation improved glucose transport in insulin-resistant muscles. Finally, in Cd36-knockout mice, we examined the role of FAT/CD36 in intramyocellular lipid accumulation, insulin sensitivity and diet-induced glucose intolerance. RESULTS: Within 2-3 days, diet-induced increases occurred in insulin, sarcolemmal FAT/CD36 (but not fatty acid binding protein [FABPpm] or fatty acid transporter [FATP]1 or 4), fatty acid transport and intramyocellular triacylglycerol, diacylglycerol and ceramide, independent of enzymatic changes or muscle fatty acid oxidation. Diet-induced increases in mitochondria and mitochondrial fatty acid oxidation and impairments in insulin-stimulated glucose transport and GLUT4 translocation occurred much later (≥21 days). FAT/CD36 ablation impaired insulin-stimulated fatty acid transport and lipid accumulation, improved insulin sensitivity and prevented diet-induced glucose intolerance. Increasing fatty acid oxidation in insulin-resistant muscles improved glucose transport. CONCLUSIONS/INTERPRETATIONS: High-fat feeding rapidly increases intramyocellular lipids (in 2-3 days) via insulin-mediated upregulation of sarcolemmal FAT/CD36 and fatty acid transport. The 16-19 day delay in the onset of insulin resistance suggests that additional mechanisms besides intramyocellular lipids contribute to this pathology.


Assuntos
Antígenos CD36/metabolismo , Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Células Musculares/metabolismo , Animais , Antígenos CD36/genética , Dieta Hiperlipídica , Proteínas de Ligação a Ácido Graxo/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Masculino , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...